首页> 外文OA文献 >Harnessing the power of Social Bookmarking for improving tag-based Recommendations
【2h】

Harnessing the power of Social Bookmarking for improving tag-based Recommendations

机译:利用社会书签的力量来改进基于标签的   建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Social bookmarking and tagging has emerged a new era in user collaboration.Collaborative Tagging allows users to annotate content of their liking, whichvia the appropriate algorithms can render useful for the provision of productrecommendations. It is the case today for tag-based algorithms to workcomplementary to rating-based recommendation mechanisms to predict the userliking to various products. In this paper we propose an alternative algorithmfor computing personalized recommendations of products, that uses exclusivelythe tags provided by the users. Our approach is based on the idea of using thesemantic similarity of the user-provided tags for clustering them into groupsof similar meaning. Afterwards, some measurable characteristics of users'Annotation Competency are combined with other metrics, such as user similarity,for computing predictions. The evaluation on data used from a real-worldcollaborative tagging system, citeUlike, confirmed that our approachoutperforms the baseline Vector Space model, as well as other state of the artalgorithms, predicting the user liking more accurately.
机译:社交书签和标记已经成为用户协作的新纪元。协作标记允许用户注释自己喜欢的内容,通过适当的算法可以对提供产品推荐有用。如今,基于标签的算法可以与基于评级的推荐机制互补工作,以预测用户对各种产品的喜爱程度。在本文中,我们提出了一种用于计算产品个性化推荐的替代算法,该算法专门使用用户提供的标签。我们的方法基于以下想法:使用用户提供的标签的这些语义相似性将它们聚类为相似含义的组。然后,将用户注释能力的一些可测量特征与其他度量(例如用户相似度)组合在一起,以进行预测。对来自现实世界协作标签系统citeUlike的数据进行的评估证实,我们的方法优于基线向量空间模型以及其他算法状态,可以更准确地预测用户的喜好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号